
Extending open compilers

David Krmpotić, Tomaž Kosar, Marjan Mernik, Viljem Žumer
University of Maribor, Faculty of Electrical Engineering and Computer Science

Smetanova ulica 17, 2000 Maribor, Slovenia
david.krmpotic@gmx.net, {tomaz.kosar, marjan.mernik, zumer}@uni-mb.si

tel: ++386-2-220-7458 fax: ++386-2-251-1178

March 7, 2005

Abstract

Domain-specific language implementation is in general
not an easy task. This is the main reason that kept them
from getting more attention and reaching the expectations
of domain-specific language researchers. Implementation
of a domain-specific language can be demanding, but also
very rewarding. Once the hard work is done, we can profit
a lot from the effort invested. The purpose of this pa-
per is to present a domain specific language construction
with extending the open compilers. Their source code –
available, well organized and clear – gives the language
designers a possibility to incorporate their domain spe-
cific constructs into the general-purpose language by ex-
tending its compiler. In this paper, we present extension
of Mono C# compiler with representative domain-specific
language.

1 Introduction

A common way of describing domain abstractions is by
defining a library for a particular general-purpose lan-
guage (GPL). However, GPLs usually do not contain ap-
propriate syntactic structures to use in straightforward
way. On the other hand, domain-specific languages
(DSLs) are customly designed languages that target the
specific domain. DSLs provide to the end-users (usually
not very proficient in the GPLs), the appropriate abstrac-
tions and notations (textual or visual) to solve the prob-
lem from the observed domain. DSLs are therefore less
general as GPLs, but at the same time more expressive in

their domain. Implementation of a domain-specific lan-
guage can be demanding, but also very rewarding. Once
the hard work is done, we can profit a lot from effort in-
vested. The good news is that “the hard work” actually is
not that hard. The purpose of this paper is to present the
DSL construction with extending an open compiler. Pro-
vided that the source code for the compiler is available
and that its production rules are well organized and clear,
the addition of the new domain specific constructs can be
relatively easy.

In the DSL literature, GPL libraries are often men-
tioned as DSL competitors. On the contrary to DSLs, the
GPL library is much easier and straightforward to imple-
ment, but less intuitive to use for the end-user. DSL re-
quires more work, but solutions are much easier to use. In
this paper, both approaches are presented and compared.
However, the special focus is on the steps required to im-
plement the DSL with an extensible compiler/interpreter
implementation approach. We present extension of Mono
C# compiler [7] with representative DSL - Feature De-
scription Language [4].

The organization of the paper is as follows: Related
work is discussed in Section 2. A DSL case study, is pre-
sented in Section 3. A construction of an GPL program
using application library for the case study is presented in
Section 4. Implementation of DSL using the extensible
compiler approach is described in Section 5. Benefits of
extending the compiler are described in Section 6. And
finally, concluding remarks are summarized in Section 7.

2 Related work
Extending the existing programming language with a new
DSL requires some means of accessing the compiler’s in-
ternal structure. This is usually done by reflection [5]:

• introspection: examination of selected system inter-
nals,

• explicit invocation: enabling programs to explicitly
invoke operations, bypassing syntax in some cases,
and

• intercession: meta-level specialization that adds to or
modifies the existing features.

However, only the last level throughly supports DSL im-
plementation using extensible compiler approach. Re-
cently, some aspect oriented languages [1, 8] have been
implemented using extensible compiler/interpreter ap-
proach. Similar, but much more radical approach, is
to add the required information to the compiler’s source
code. However, this approach brings some advantages,
that are described later in the paper.

3 Case study
In order to show the extension of an open compiler, we
need to choose the appropriate domain to solve. Feature
Description Language (FDL) [4] was devised to serve as
an example.

In FDL we can describe features and their hierarchi-
cal composition. Feature can be atomic, optional,
one-of, more-of or all. Atomic feature is the basic
construct, optional feature can be present or not, one-of
means that exactly one of the child features can be present
in the configuration. More-of is similar to one-of, ex-
cept that arbitrary number of child features can be chosen
from the set. All means that all the children have to be
present.

Below you can observe a FDL program for a simple
Car composition definition:

feature car = all("carBody", transmission, engine,
horsePower, opt("pullsTrailer"))

feature transmission = one_of("automatic", "manual")
feature engine = more_of("electric", "gasoline")
feature horsePower = one_of("lowPower", "mediumPower",

"highPower")

constraint "pullsTrailer" requires "highPower"
constraint include "pullsTrailer"

The meaning of the FDL program are all the possible
configurations of a system obtained by four transforma-
tion steps: regularization, normalization, expansion and
constraint satisfaction. Interested reader can find more de-
tails about transformation steps in [4]. Below you can find
a solution of the Car program:

one-of(
all(cB, automatic, electric, highPower, pT)
all(cB, automatic, gasoline, highPower, pT)
all(cB, automatic, electric, gasoline, highPower, pT)
all(cB, manual, electric, highPower, pT)
all(cB, manual, gasoline, highPower, pT)
all(cB, manual, electric, gasoline, highPower, pT)

)

* cB = carBody

* pT = pullsTrailer

Every All feature above represents a possible solution
of our problem.

4 GPL approach
As we mentioned before, a common way to solve a prob-
lem is to define a library for a particular GPL with a corre-
sponding API. This API represents an interface that acts
as a mediator between DSL and the domain knowledge
from the application library. To demonstrate the Car pro-
gram in GPL, the application library for FDL was created.
Below you can find a GPL program describing the Car
program from previous section.

//CARBODY
AtomicFeature carBody =

FeureBuilder.BuildAtomic("carBody");

//TRANSMISSION
AtomicFeature automatic =

FeatureBuilder.BuildAtomic("automatic");
AtomicFeature manual =

FeatureBuilder.BuildAtomic("manual");
OneOfFeature transmission =

FeatureBuilder.BuildOneOf();
transmission.AddFeature(automatic);
transmission.AddFeature(manual);

//ENGINE
AtomicFeature electric =

FeatureBuilder.BuildAtomic("electric");
AtomicFeature gasoline =

FeatureBuilder.BuildAtomic("gasoline");
MoreOfFeature engine =

FeatureBuilder.BuildMoreOf();
engine.AddFeature(electric);
engine.AddFeature(gasoline);

//HORSEPOWER
AtomicFeature highPower =

FeatureBuilder.BuildAtomic("highPower");
AtomicFeature mediumPower =

FeatureBuilder.BuildAtomic("mediumPower");
AtomicFeature lowPower =

FeatureBuilder.BuildAtomic("lowPower");
OneOfFeature horsePower = FeatureBuilder.BuildOneOf();
horsePower.AddFeature(highPower);
horsePower.AddFeature(mediumPower);
horsePower.AddFeature(lowPower);

//PULLSTRAILER
AtomicFeature pullsTrailer =

FeatureBuilder.BuildAtomic("pullsTrailer");
OptFeature optPullsTrailer =

FeatureBuilder.BuildOpt(pullsTrailer);

//CAR
AllFeature car = FeatureBuilder.BuildAll();
car.AddFeature(carBody);
car.AddFeature(new ReferenceFeature("engine"));
car.AddFeature(new ReferenceFeature("transmission"));
car.AddFeature(new ReferenceFeature("horsePower"));
car.AddFeature(optPullsTrailer);

//DEFINITNIONS
FeatureDefinitions def = new FeatureDefinitions();
def.Add("engine", engine);
def.Add("transmission", transmission);
def.Add("horsePower", horsePower);

//CONSTRAINTS
ConstraintContainer cons = new ConstraintContainer();
cons.Add(

new RequiresConstraint(pullsTrailer, highPower));
cons.Add(new IncludeConstraint(pullsTrailer));

//obtain the meaning of a program
FDLManager fdl = new FDLManager(car);

//regularize (resolve references)
fdl.Regularize(def);

//apply normalization rules
fdl.Normalize();

//apply expansion rules
fdl.Expand();

//apply constraints
fdl.Satisfy(cons);

//print the results
Console.WriteLine(fdl.GetResults());

As we can see, using the GPL for representing our do-
main specific problem is not optimal. Structure of the
code differs a lot from the intuitive description of FDL
presented in previous section.

5 Extensible compiler approach
Contrary to the GPLs, DSLs are more concerned with pro-
viding a simple syntax for representation of the domain
knowledge. To develop a DSL one can choose from vari-

ety of implementation approaches as defined in [6]. One
of the most demanding is extensible interpreter/compiler
approach. Here, DSL developer requires access to the de-
finition of the base language notation in order to incorpo-
rate the DSL syntax definition. Compilers, that allow in-
corporating new features to the base language, are called
open compilers - Mono, C# compiler, is one of them.

Mono is an open source implementation of Microsoft
.NET Framework that runs on Windows, Linux and vari-
ous Unix platforms. .NET Framework is an environment
for running programs containing special type of code
called the Microsoft Intermediate Language (MSIL). That
way greater portability is achieved while .NET programs
can run everywhere the framework is available, indepen-
dent of the underlying architecture. Other advantages that
come from the managed code concept are garbage collec-
tion, type safety, array bounds and index checking, and so
forth.

Under the Mono project, the open source compiler for
C#, Mono C# compiler (MSC), was developed. MSC it-
self is a MSIL (interpreted) executable and thus able to
run anywhere the framework (Mono or Microsoft’s .NET)
is present. MSC was written in C# and initially compiled
with CSC (Microsoft’s original C# compiler). Now MSC
is able to compile itself.

Our goal was to incorporate FDL definitions some-
where inside the C# code. Below you can find general
FDL notation incorporated in C#. Of course, the struc-
ture of a specification is differing substantially from the
pure FDL code (see Section 3) – it needs a lot of open-
ing and closing statements, structure that nicely integrates
with the rules of C# notation.

begin_spec(<FDL_feature>, <result>)
begin_features()
<feature_definition>
...

end_features()

begin_constraints()
<constraint_definition>
...

end_constraints()
end_spec()

FDL feature is the root feature, an entry point to our
composition. By <feature definition> we define
features (atomic, all, one-of, more-of, optional). Con-
straints (<constraint definition>) are defined in
a separate optional section.

To achieve the incorporation, we add the FDL compil-
ing capability to our Mono C# compiler. Mono 1.0.1 is
chosen to integrate our language into C# notation. Mono
parser is specified using Jay (Berkley Yacc parser genera-
tor [3]) modified to use C# for the semantic actions. The
file cs-parser.jay contains the specification of the
Mono compiler in standard LEX/YACC notation.

In Jay specifications, the lexical analyzer is invoked
from file cs-tokenizer.cs, where hand-coded lex-
ical analyzer is defined. All of the language constructs
(keywords, identifiers, punctuation, etc.) are defined here.
We add our keywords to the special hashtable as shown
bellow:

AddKeyword("begin_spec", Token.BEGIN_SPEC);
AddKeyword("end_spec", Token.END_SPEC);
AddKeyword("feature", Token.FEATURE);
AddKeyword("all", Token.ALL);
...

Some C# predefined constructs, like IDENTIFIER (for
feature names and atomic literals), are reused from the
original C# notation. That demands some constraints to
be put on the FDL notation. For example, if we wanted
to say that feature names can only start with a capi-
tal letter, we would have to add the definition for UP-
PER CASE IDENTIFIER to the existing tokenizer. The
philosophy is to use what is already defined in the base
language.

FDL productions are added to the parser specifications.
We have to define the production rules and the extension
point – this is where our compiler gets aware of the new
FDL construct definition. Before compiling the compiler,
the mentioned .jay file has to be compiled by Jay ported
to C#. This way the C# code for parsing is obtained from
more readable .jay rules.

class_member_declaration
: constant_declaration
| method_declaration
...
| FDL_declaration ;

We add the FDL declaration non-terminal to
class member declaration so that FDL can be de-
fined inside every C# class.

As you can see from the partial FDL language pro-
ductions below, Jay specifications use LEX/YACC con-
vention, meaning that capital letters are used for terminal
symbols while non-terminals use small caps.

FDL_declaration : BEGIN_SPEC OPEN_PARENS IDENTIFIER
opt_spec_variable CLOSE_PARENS

opt_features_decl
opt_constraints_decl
END_SPEC OPEN_PARENS CLOSE_PARENS opt_semicolon
;

opt_features_decl :
/* empty */
| BEGIN_FEATURES
OPEN_PARENS CLOSE_PARENS features_decl
END_FEATURES
OPEN_PARENS CLOSE_PARENS opt_semicolon

;
features_decl

: feature_decl
| features_decl feature_decl
;

feature_decl:
FEATURE IDENTIFIER ASSIGN feature;
;

feature: ...

In Jay, semantic code is written in curly brackets be-
fore and after the rule. As the compiler itself is written in
C#, we can reuse the already written FDL library with its
corresponding API.

With added semantical rules, one of above-mentioned
rules becomes:

feature_decl:
FEATURE IDENTIFIER ASSIGN feature {
Feature fe = (Feature)$4;
FDLdefinitions.Add((string)$2, fe)

};

”$n”, where n is a natural number, denotes the n-th ar-
gument of the right hand production. When control goes
to a production and eventually reaches a terminal, this ter-
minal or some function of it is returned and propagated
up to became our argument. The syntax used for return-
ing the terminal is ”$$”.

Further example:

feature: {
feature_stack.Push(FeatureBuilder.BuildAll());

}
all_feature {
$$ = feature_stack.Pop();

}
...
| atomic_feature {

$$ = FeatureBuilder.
BuildAtomic((string)atomic_feature);

};

Here we can observe another detail of implementation
of the semantical analysis. We use the simple stack to
help us build the feature tree. Every time a composite
feature is created, it is pushed on the stack, so the children

can be added to the current feature on the stack. This
way we can go one or more levels down the hierarchy
without forgetting exactly which feature is the parent of
the current one.

After extending the compiler with FDL, we are able to
write the following program. Class FDLCar is a C# class,
but it contains domain-specific constructs to define a Car
program.

class FDLCar {
begin_spec(car, strResults)

begin_features()
feature transmission= one_of ("automatic",

"manual")
feature engine = more_of("electric",

"gasoline")
feature horsePower = one_of("lowPower",

"mediumPower",
"highPower")

feature car = all ("carBody", transmission,
engine, horsePower,
opt("pullsTrailer"))

end_features()

begin_constraints()
constraint "pullsTrailer" requires "highPower"
constraint include "pullsTrailer"

end_constraints()
end_spec()

static void Main() {
Console.WriteLine (strResults);

}
}

6 Benefits of extending the compiler
Big advantage of the extensible compiler/interpreter ap-
proach is that the resulting program is much easier to
understand, modify and maintain for the end-user. DSL
incorporation into GPL can increase programming effi-
ciency and readability of the code.

Error reporting

Supporting domain-specific abstractions and notation is
just a first step to build a DSL. Usually, this is the
only feature the language developers provide to the end-
users. This insufficiency can be bridged by providing
programming tools, like inspectors, that are aware of
domain-specific constructs. While other DSL implemen-
tation approaches, find this task very hard, extensible
compiler/interpreter approach already contains needed in-
frastructure for building them.

For example, adding error reporting in open compilers,
like in Mono, is very easy. DSL’s program syntactical
errors will be caught automatically by the scanning and
parsing process while handling semantical errors has to
be added manually. To support that, Mono compiler has
defined the following static method:

Report.Error(string message, Location location)

which shows the information about the error and ter-
minates the compiling process. For example, if the fea-
ture was referenced, but never defined, we can report that
very easily. We save all the references to a given feature
using the variable lexer.location available during
parsing. If upon completing the process, the referenced
feature remains undefined, we report the error with all the
dangling references’ locations.

Benefits of open compilers

Sometimes the open version of a given compiler is not
available, but another open compiler for the same pro-
gramming language exists. This is also the case with Mi-
crosoft and Mono C# compilers.

In case we want to use Microsoft C# compiler for the
major part of our project, we can put our code with DSL
in a separate DLL and compile it with Extended Mono C#
compiler and then use it normally from our project. This
way our module can be consumed from any C# compiler,
because the generated intermediate language is the same
and compilers are not aware which compiler was used to
produce the code.

We can go a step further and actually use our DSL ex-
tended GPL from the Visual Studio.NET IDE. We put our
DSL in comments so that the IDE’s on-the-fly error de-
tection does not complain. We also have to tell the IDE to
run our program for removing the comments and then the
MSC instead of CSC.

Advantages/disadvantages of extending the compiler

The DSLs are meant to be used by the end-users with-
out a special knowledge of programming languages, but
skilful in their specific domain. Looking from another
prospective, DSLs can also provide GPL programmers
with more natural notation when using specific applica-
tion library. We found one good example in [2], where
DSL for SWING graphical notation in Java is constructed.

In [2], MetaBorg tool helps to include a particular DSL
notation back into a GPL by assimilating (not extending)
it into the language i.e. domain-specific notation is trans-
lated into some existing APIs operations. As result of as-
similation, GPL code is obtained.

When we extend the compiler once, we learn the steps
and adding additional DSLs in no longer a problem. This
brings idea of multiple-DSL incorporation into base lan-
guage notation. This can be useful, but also very danger-
ous. Open compilers are vulnerable to the possibility of
interfering with the base language. Furthermore, special
care has to be taken when choosing the non-terminals for
our DSL. Otherwise unwanted assimilation can occur be-
tween base language and DSL. Other problem is that our
new keywords cannot longer be used as variable names in
programs. We could isolate the modules with DSL code
and compile them with extended compiler to a library.

When defining more than one DSL, same measures
have to be taken. Keywords, non-terminal names, etc. of
all the defined DSLs should not interfere. Solution would
be to use the domain prefix to all the keywords for that
DSL. For example “FDLFeature” instead of “feature”.

Disadvantages mentioned above led to the idea of spe-
cial “framework” construction. Its task is to make easy as
possible to language developers to incorporate their DSLs
to base language. This tool, can not be seen as a compiler
generator, which main task is to write specifications for
a DSL. In contrary, this tool should automate integration
of and integrate a DSL to existing language compiler and
replace existing with new, DSL-aware compiler.

7 Conclusion

Extending the compiler can prove beneficial if we want to
simplify the process of writing the programs in the exist-
ing GPL.

If we need the DSL compiler as a stand-alone entity
meant to be used by the specialists from the field, it could
also be better to extend the compiler. By using the exist-
ing infrastructure, we can reuse the existing language con-
structs, like keywords, already defined in base language.
Other main advantage of this is the ability to use GPL
around DSL to complement it. In this case we reversed
the logic. Now the domain experts can compile their DSL
programs and get the results - not to the screen, but in

some data structure. They can further process those re-
sults by using the GPL’s functionality. There is no need
for the developer of the DSL to provide that functionality.

By extending open-compilers and preserving the pro-
gramming tools, like debuggers, with the domain specific
information, we have also encountered possible ambigu-
ities when extending the compiler with variety of DSLs.
As a future work we are observing the possibilities and
usefulness of constructing a tool for Mono C# compiler
to support easier integration of domain-specific notation
to the existing compiler.

References
[1] Kai Bollert. On weaving aspects. In Proceedings of

the Aspect-Oriented Programming Workshop, 1999.

[2] Martin Bravenboer and Eelco Visser. Concrete syn-
tax for objects. Domain-specific language embedding
and assimilation without restrictions. In Proceedings
of the 19th ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Ap-
plications (OOPSLA’04), pages 365–383, 2004.

[3] Robert Corbett. Berkeley yacc, 1990.
http://dickey.his.com/byacc/byacc.html.

[4] A. van Deursen and P. Klint. Domain-specific lan-
guage design requires feature descriptions. Journal
of Computing and Information Technology, 10(1):1–
17, 2002.

[5] Gregor Kiczales, Jim des Rivières, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. The MIT
Press, 1991.

[6] M. Mernik, J. Heering, and A. Sloane. When and
how to develop domain-specific languages. Technical
report, University of Maribor, CWI Amsterdam, and
Macquarie University, 2003. Draft.

[7] Mono. Online dictionary for computer and
internet technology definitions, available at
http://www.mono-project.com/, 2005.

[8] Lionel Seinturier. Jst: An object synchronization as-
pect for java. In Proceedings of the Aspect-Oriented
Programming Workshop at ECOOP99, 1999.

